

Otolith Fingerprint Signatures: A mass marking technique for marking farmed Atlantic Salmon Salmo salar

University of Melbourne, Australia

Fletcher Warren-Myers

Dr Tim Dempster

Associate Prof. Steve Swearer

Institute of Marine Research, Norway

Dr Tom Hansen

Dr Per Gunnar Fjelldal

Farmed fish escapee

"Escapees can have detrimental genetic and ecological effects on populations of wild conspecifics, and the present level of escapees is regarded as a problem for the future sustainability of sea-cage aquaculture" (Naylor et al., 2005).

To understanding the impacts

Identify and trace

Identification of escapees

Genetic markers - ID 60-90%, Traceability 60-90% (continuous data library required)

Adipose fin clipping – ID 100%, Traceability not possible (welfare issues)

Scale readings – ID 90%, Traceability not possible (data library required)

Physical tags – coded wire; t-bar tags ID 95%, Traceability possible (welfare issues, and costly)

Fluorescence markers – ID 95%, Traceability not possible

Current methods fail either in 100% mark detectability, traceability, have welfare issues, or are costly

Identification using stable isotope "otolith fingerprinting"

- 100% marking and traceability of escapees
- Otolith formed during embryogenesis
- Grow continuously
- Metabolically inert
- Incorporated impurities into the otolith matrix (e.g. isotopes of Ba, Sr, Mg)
- Used to create permanent, unique isotopic fingerprint signatures

Barium isotopes (Ba)

Natural ratios of Ba and Sr

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

Fingerprint mark (#marks = 0)

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

- Wild Salmon
- Farmed Salmon

Fingerprint mark (#marks = 1)

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

Adding ¹³⁶Ba

- Wild Salmon
- Farmed Salmon

Fingerprint mark (#marks = 2)

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

Adding ¹³⁵Ba

- Wild Salmon
- Farmed Salmon

Fingerprint mark (#marks = 3)

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

Adding ¹³⁴Ba

- Wild Salmon
- Farmed Salmon

Fingerprint mark (#marks = 4)

Ba compared to ¹³⁸Ba Sr compared to ⁸⁸Sr

Adding 86Sr

- Wild Salmon
- Farmed Salmon

How many unique fingerprints?

1 isotope $(2^1 - 1) = 1$ mark

2 isotopes $(2^2 - 1) = 3$ markers

3 isotopes $(2^3 - 1) = 7$ markers

7 isotopes $(2^7 - 1) = 127$ markers

Number of possible markers = $(2^{\text{number of isotopes}} - 1)$ Possible to create > 1000 combinations

Enough for each fish farm to have its own individual unique fingerprint marker

LA-ICP-MS analysis of fish otoliths

LA-ICP-MS analysis of fish otoliths

Spot ablation

Detecting a successful mark (137Ba)

Aims

To develop 3 different stable isotope mark delivery techniques for Atlantic salmon

- 1) Vaccination (parr stage)
- 2) Maternal transfer (brood stock)
- 3) Egg immersion (fertilised eggs)
- Parr

 Smolts

 Eggs (roe)

 Adult
- Confirmation Can we create unique marks?
- Optimization how well does each technique work?
- Welfare side effects?
- Commercial viability applicability, cost?

Mark application points

Application points

Vaccination

Isotopes

¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr, ²⁶Mg

Concentrations

1

0.1

0.01

0.001

(µg. g⁻¹ parr weight)

Maternal transfer

Isotopes

¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr, ²⁶Mg Concentrations

2

0.2

0.02

0.002

(μg. g⁻¹ broodfish weight)

Egg immersion

Isotopes

¹³⁷Ba, ¹³⁶Ba, ¹³⁵Ba, ¹³⁴Ba, ⁸⁷Sr, ⁸⁶Sr, ²⁶Mg

Concentrations

1000 - 2500

100 - 250

10 - 25

1 - 25

μg. L⁻¹ water

Vaccination 100% mark success

137Ba Require 0.001 µg per g of parr

134Ba

Require 0.01 µg per g of parr

136**Ba**

¹³⁷Ba

86**S**r

Require 1 µg per g of parr

⁸⁷Sr

Maternal transfer 100% mark success

¹³⁷Ba

¹³⁵Ba

Require 0.02 µg per g of brood fish

¹³⁴Ba

Require 0.2 µg per g of brood fish

136**B**a

86**S**r

87**S**r

Require 2 µg per g brood fish

Egg immersion 100% mark success

¹³⁷Ba

Require 100 µg per litre

¹³⁵Ba

136Ba Require 1000 µg per litre

Monitoring of fish health parameters found:

No effect on Growth

No effect on Condition

No effect on Mortality

Cost projections

Scenario 1: Marking 100% of production with 1 marker (achievable)

Cost projections Scenario 1

Marking 300 million farmed Atlantic salmon with 1 Ba code

Vaccination (50 g fish)	Material Cost (\$US)	Total
¹³⁷ Ba @ 0.001 μg. g ⁻¹ fish weight	\$4.36 per mg	
(15 g for 300 million parr)	(~ \$0.0006 per parr)	\$65400

Egg immersion (2000 eggs L ⁻¹)	Material Cost (\$US)	Total
¹³⁷ Ba @ 100 μg. L ⁻¹	\$4.36 per mg	
(150,000 L for 300 million eggs)	(~ \$0.44 per litre)	\$65400

Maternal Transfer (5000 eggs per 10 kg brood fish)	Material Cost (\$US)	Total	
¹³⁷ Ba @ 0.02 μg. g ⁻¹ brood fish weight	\$4.36 per mg	1	
(60000 brood fish for 300 million eggs)	(~ \$0.872 per brood fish)	\$52320	

Cost projections

Scenario 2: Marking 100% of production (54 Companies)

54 companies, 300 million salmon, 2 delivery methods, 54 codes

Method: Marking fish with Ba codes either via vaccination or maternal transfer or marking with a combination of maternal transfer and vaccination.

5 largest companies make up 53% of production: Marine Harvest 22%, Lerøy Seafoods 13%, Salmar 9%, Cermaq 5% and Grieg Seafoods 4%.

19 medium companies make up a further 27% of production: Average size 1.43% each.

30 small companies make up the final 20% of production: Average size 0.67% each.

Cost projections Scenario 2

54 companies, 300 million salmon, 2 delivery methods, 54 codes

Company Number	Company (% size)	Production (n fish)	Code number	Cost per fish	Cost per company	╛
Marine Harvest	22%	66000000	2MT	\$0.0002	\$11,510	1
Lerøy	13%	39000000	1V	\$0.0002	\$8,502	П
Salmar	9%	27000000	3V	\$0.0003	\$8,910	И
Cermaq	5%	15000000	1V2MT	\$0.0004	\$5,886	Г
Grieg	4%	12000000	3V2MT	\$0.0005	\$6.053	4
6	1.42%	4263158	4MT	\$0.0005	\$2,201	П
7	1.42%	4263158	5V	\$0.0006	\$2,752	П
8	1.42%	4263158	16MT	\$0.0007	\$2,945	П
9	1.42%	4263158	1V4MT	\$0.0007	\$3,131	ı
10	1.42%	4263158	5V2MT	\$0.0008	\$3,495	ı
11	1.42%	4263158	3V4MT	\$0.0008	\$3,608	ı
12	1.42%	4263158	1V16MT	\$0.0009	\$3,874	ı
13 14	1.42% 1.42%	4263158 4263158	7V 5V4MT	\$0.0010 \$0.0010	\$4,272	ı
14 15	1.42%	4263158 4263158	5V4MT	\$0.0010	\$4,352 \$4,953	ı
16	1.42%	4263158	7V2MT	\$0.0012	\$5,015	II.
17	1.42%	4263158	5V16MT	\$0.0012	\$5,697	ľ
18	1.42%	4263158	7V4MT	\$0.0015	\$6,473	Г
19	1.42%	4263158	7V16MT	\$0.0017	\$7,217	П
20	1.42%	4263158	6MT	\$0.0026	\$11,255	П
21	1.42%	4263158	15MT	\$0.0028	\$11,233	ı
22	1.42%	4263158	1V6MT	\$0.0029	\$12,184	П
23	1.42%	4263158	3V6MT	\$0.0025	\$12,662	ı
24	1.42%	4263158	1V15MT	\$0.0030	\$12,928	П
25	0.67%	2000000	3V15MT	\$0.0031	\$6,289	4.
26	0.67%	2000000	18MT	\$0.0032	\$6,313	
27	0.67%	2000000	5V6MT	\$0.0033	\$6,571	П
28	0.67%	2000000	26MT	\$0.0033	\$6,662	П
29	0.67%	2000000	1V18MT	\$0.0034	\$6,749	
30	0.67%	2000000	5V15MT	\$0.0035	\$6,920	
31	0.67%	2000000	3V18MT	\$0.0035	\$6,973	
32	0.67%	2000000	1V26MT	\$0.0035	\$7,098	И
33	0.67%	2000000	7V6MT	\$0.0036	\$7,284	k
34	0.67%	2000000	3V26MT	\$0.0037	\$7,322	
35	0.67%	2000000	5V18MT	\$0.0038	\$7,604	
36	0.67%	2000000	7V15MT	\$0.0038	\$7,633	П
37	0.67%	2000000	5V26MT	\$0.0040	\$7,953	
38	0.67%	2000000	7V18MT	\$0.0042	\$8,317	
39	0.67%	2000000	7V26MT	\$0.0043	\$8,666	
40	0.67%	2000000	9V	\$0.0055	\$10,960	
41	0.67%	2000000	9V2MT	\$0.0057	\$11,309	
42	0.67%	2000000	9V4MT	\$0.0060	\$11,993	
43	0.67%	2000000	9V16MT	\$0.0062	\$12,342	
44	0.67%	2000000	8MT	\$0.0080	\$16,032	П
45	0.67%	2000000	9V6MT	\$0.0081	\$16,240	
46	0.67%	2000000	17MT	\$0.0082	\$16,381	
47	0.67%	2000000	1V8MT	\$0.0082	\$16,468	
48 49	0.67% 0.67%	2000000 2000000	9V15MT 3V8MT	\$0.0083 \$0.0083	\$16,589 \$16,692	
49 50	0.67%	2000000	20MT	\$0.0083		
50 51	0.67%	2000000	20M1 10V	\$0.0085	\$17,065 \$17,270	
51 52	0.67%	2000000	9V18MT	\$0.0086	\$17,270 \$17,273	
53	0.67%	2000000	5V8MT	\$0.0087	\$17,323	
53 54	0.67%		28MT			
54	0.6/%	2000000	28M1	\$0.0087	\$17,414	_

5 largest companies (53% production) \$0.0003 per fish to mark

19 medium companies (27% production) \$0.0015 per fish to mark

30 small companies (20% of production) \$0.0057 per fish to mark

In total 54 companies (100% of production) Average cost of \$0.0017 per fish to mark.

Total material cost: \$500,000

Summary

All three techniques could be used for mass marking Atlantic salmon with 100% mark success

Vaccination: 63 unique fingerprints

Maternal Transfer: 63 unique fingerprints

Egg immersion: 7 unique fingerprints

Ba markers are cheaper and require less isotope than Sr markers to achieve 100% mark success

Thank you